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1. Introduction

The Byzantine vector consensus problem is a well studied problem in distributed
computation, where each process receives a vector in Rd, and the non-faulty pro-
cesses are required to output a vector lying in the convex hull of the input vectors of
all non-faulty processes. In the exact version, all non-faulty processes must output
the same vector; while in the approximate version, their outputs must be within
ε-distance to each other. Vaidya and Garg [VG13] completely solved this problem,
showing that

• in the synchronous setting, exact Byzantine vector consensus is solvable if
and only if n ≥ max{3, d+ 1}f + 1, where n is the number of processes, d
is the dimension, and f is the number of Byzantine faults;
• in the asynchronous setting (where exact Byzantine vector consensus is

impossible), the approximate version is solvable if and only if n ≥ (d +
2)f + 1.

Since solving the Byzantine vector consensus problem is impossible when d > n,
which is usually the case when dealing with high-dimensional data, we need to
resort to a relaxed guarantee to improve the dependence of n on d.

Two definitions of closeness for relaxed Byzantine vector consensus have been
studied by Xiang and Vaidya [XV17]. In k-consensus, any k-dimensional orthogonal
projection of the output must be in the convex hull of the same projection of all non-
faulty inputs; in (δ, p)-consensus, the output is required to be δ-close in Lp-distance
to the convex hull.

For k-consensus, they showed that the dependence of n on d can be eliminated
if and only if k = 1, where it is trivially achievable by applying Byzantine scalar
consensus pointwise. For (δ, p)-consensus, they showed that for p = 2 and certain
combinations of n, f (namely, f = 1 or n = (d + 1)f), it is possible to achieve
a δ which is the product of a function of n, f and the max Lp distance between
non-faulty inputs. This adaptive version makes more sense than constant δ since
scaling up the inputs would not affect the guarantee of the algorithm. For general
n, f, p such that n ≥ 3f + 1, they conjectured an upper bound for δ which depends
on d.

In this paper, we show that for all n, f, p such that n ≥ 3f+1, the (δ, p)-consensus
problem is solvable with δ the product of a function of n, f and the max Lp distance
between non-faulty inputs, but independent of d. The corresponding algorithms are
surprisingly simple. We also provide lower bounds for δ by constructing a symmetric
data set, which match the upper bound up to a factor of 4 for L1 and L∞ norm.

1.1. Application. This problem is motivated by distributed estimation with Byzan-
tine failure [YCKB18]. In a distributed estimation problem, most of the processes
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will report their data, which is essentially an empirical distribution of some true
distribution µ, while the faulty processes may report arbitrary distributions. As
long as the consensus is close to the convex hull of the truthful empirical distribu-
tions, it will also converge to the true distribution by Glivenko–Cantelli theorem (or
Dvoretzky–Kiefer–Wolfowitz inequality for non-asymptotic version). As a result, it
is highly desirable to understand when this task is tractable and the corresponding
complexity.

1.2. Organization. A summary of our results for the input-dependent relaxed
Byzantine vector consensus problem is in Table 1.2.
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In Section 2, we prove upper bounds for the input-dependent relaxed Byzantine
vector consensus problem. In Section 3, we prove lower bounds for the problem. In
Section 4, we prove some other results related to relaxed Byzantine consensus.

2. Input-Dependent Upper Bound

In this section we prove input-dependent upper bounds for relaxed Byzantine
consensus problem.

Let us first rigorously define the problem. There are n processes and at most f
of them suffer from Byzantine failure. Each process i holds a input Xi, which is a
vector in some normed space. Each non-faulty processes i should output a vector,
satisfying

• Exact agreement: All non-faulty outputs should be the same.
• Relaxed validity: The non-faulty output should have distance (in the given

norm) at most δ to the convex hull of the non-faulty inputs.

In the input-dependent version, we compare δ with e, the maximum distance be-
tween any two non-faulty inputs. We aim to minimize κ = κ(n, f, || · ||) such that
δ ≤ κe holds.

In Section 2.1, we prove an upper bound for L∞. In Section 2.2, we prove a
(slightly worse) upper bound for general norms. Interestingly, the upper bounds
we achieve do not dependent on the dimension d.

2.1. Upper bound for L∞ distance.

Proposition 1. For the synchronous relaxed Byzantine consensus problem under
L∞ distance and f failures (n ≥ 3f + 1), there exists an algorithm that can output
a vector with at most

f

n− f
max

i 6=j non-faulty
||Xi −Xj ||∞

distance to the convex hull of vectors of non-faulty processes.
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Proof. Each process broadcasts Xi using the standard Byzantine agreement algo-
rithm. This can be done because n ≥ 3f + 1. After this step, all non-faulty process
agree on the same sequence X1, . . . ,Xn of vectors.

For each coordinate k, let y1 ≤ . . . ≤ yn be sorted list of X1,k, . . . ,Xn,k. Every
non-faulty process outputs

1

n− 2f

∑
f+1≤i≤n−f

yi

for this coordinate. Let X∗ be the output vector. We prove that X∗ satisfies

dL∞(X∗,Conv(XS)) ≤ f

n− f
max
i,j∈S

||Xi −Xj ||∞,

where S ⊆ [n] is the set of non-faulty processes.
We have

dL∞(X∗,Conv(XS)) ≤ ||X∗ − 1

|S|
∑
i∈S

Xi||∞.

Fix a coordinate k. WLOG assume that X1,k ≤ · · · ≤ Xn,k. So yi = Xi,k for all
1 ≤ i ≤ n. Let A = S ∩ {1, . . . , f}, and B = S ∩ {n− f + 1, . . . , n}.

Let e = maxi,j∈S |Xi,k − Xj,k|. Because |S| ≥ n − f , yn−f − yf+1 ≤ e. We
consider a coupling between Unif(S) and Unif({f + 1, . . . , n − f}), satisfying: if
i ∈ A, j ∈ B, and (i, k) and (j, l) have non-zero weights in the coupling, then k ≤ l.
Such a coupling can easily be constructed. By this coupling, we get

| 1

n− 2f

∑
f+1≤i≤n−f

yi −
1

|S|
∑
j∈S

Xj,k| ≤
max{|A|, |B|}

|S|
e ≤ f

n− f
e.

Applying the above for all coordinates k, we get the desired result. �

2.2. General upper bound.

Proposition 2. For the synchronous relaxed Byzantine consensus problem under
arbitrary norm and f failures (n ≥ 3f + 1), there exists an algorithm that can
output a vector with at most

2f

n− f
max

i6=j non-faulty
||Xi −Xj ||

distance to the convex hull of vectors of non-faulty processes.

Proof. Each process broadcasts Xi using the standard Byzantine agreement algo-
rithm. This can be done because n ≥ 3f + 1. After this step, all non-faulty process
agree on the same sequence X1, . . . ,Xn of vectors. Let T ⊆ [n], |T | ≥ n − f
be a set with smallest maxi,j∈T ||Xi − Xj ||. All non-faulty processes outputs
X∗ = 1

|T |
∑
i∈T Xi.

We prove that X∗ satisfies

d(X∗,Conv(XS)) ≤ f

n− f
max
i,j∈S

||Xi −Xj ||,

where S ⊆ [n] is the set of non-faulty processes.
Because |T |, |S| ≥ n− f and n ≥ 3f , we have T ∩ S 6= ∅. If k ∈ T ∩ S, then for

every i ∈ T , j ∈ S, we have

||Xi −Xj || ≤ ||Xi −Xk||+ ||Xk −Xj || ≤ 2 max
i,j∈S

||Xi −Xj ||.
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The two distributions Unif(S) and Unif(T ) has total variation distance at most
f

n−f . By using a coupling that achieves this total variation distance, we get

|| 1

|T |
∑
i∈T

Xi −
1

|S|
∑
i∈S

Xi|| ≤
2f

n− f
max
i,j∈S

||Xi −Xj ||.

This finishes the proof. �

We give an alternative proof of Proposition 2 using linear metric embedding to
L∞ space. This method uses slightly more machinery and achieves the same bound
as Proposition 2, but an improvement to Proposition 1 would imply directly an
improved upper bound for general norms.

Alternative proof of Proposition 2. As usual, each process broadcasts Xi using the
standard Byzantine agreement algorithm. This can be done because n ≥ 3f + 1.
The output vector is the same as the X∗ in the previous proof. We use a different
way to prove that

d(X∗,Conv(XS)) ≤ f

n− f
max
i,j∈S

||Xi −Xj ||.

Note that any finite dimensional normed space embeds isometrically and linearly
into L∞ (with possibly uncountable dimension). Such an embedding could be
constructed as the following: Consider the dual space of the original normed space.
The codomain space has uncountable dimension, labeled by elements in the unit
ball of the dual space. Each vector X in the original space is mapped to f(X)
for coordinate f . One can verify that this is a linear isometric embedding of the
original normed space into L∞.

Let g be the embedding mentioned above. Let Yi = g(Xi). By Proposition 1,
there exists Y∗ such that

||Y∗ − 1

|S|
∑
i∈S

Yi||∞ ≤
f

n− f
max
i,j∈S

||Yi −Yj ||∞

for all S ⊆ [n], |S| ≥ n− f .
So

||X∗ − 1

|S|
∑
i∈S

Xi|| = ||
1

|T |
∑
i∈T

Xi −
1

|S|
∑
i∈S

Xi||

= || 1

|T |
∑
i∈T

Yi −
1

|S|
∑
i∈S

Yi||∞

≤ || 1

|T |
∑
i∈T

Yi −Y∗||∞ + || 1

|S|
∑
i∈S

Yi −Y∗||∞

≤ f

n− f
max
i,j∈T

||Yi −Yj ||∞ +
f

n− f
max
i,j∈S

||Yi −Yj ||∞

≤ 2f

n− f
max
i,j∈S

||Yi −Yj ||∞

=
2f

n− f
max
i,j∈S

||Xi −Xj ||.

�
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3. Input-Dependent Lower Bound

In this section, we construct input-dependent lower bounds for relaxed Byzantine
consensus problem. We begin with the general construction in Section 3.1 and then
specialize the result for different norms (L1 in Section 3.2, L∞ in Section 3.3 and
general Lp in Section 3.4.)

3.1. General construction. Since we are interested in dimension-free bounds,
i.e., dimension d does not appear in the bound of distance explicitly, let’s consider
the case when d is large. In following, we will construct the lower bound when
d = n!.

Fix n scalars {ai}ni=1, whose value will be chosen later in the subsequent sections
to cater specific norms. To simplify the exposition, we will use any permutation
σ ∈ Sn to denote a number in [n!] when there is no confusion. Here, Sn is the set of
all the permutations on [n]. Now let’s define the input {Xi}ni=1 based on {ai}ni=1:

Xi,σ = aσ(i)

Intuitively, if we consider {Xi}ni=1 as columns of a matrix X ∈ Rn×n!,

X =
[
X1,X2, · · · , Xn

]
,

then the σ-th row of X is the vector we get by applying σ to the coordinates of
a = [a1, a2, · · · , an].

This symmetric construction indicates a symmetric property in different coor-
dinates. Define the permutation version Yσ by Y στ = Yσ◦τ , then as a result, Yσ

is ”as good as” Y. Mathematically, let T ⊆ [n] be the set of indices of non-faulty
processes, then

d (Y,Conv (XT )) = d
(
Yσ,Conv

(
Xσ(T )

))
.

So in worst case the distance is no worse then that of Y. Choose

T ∗ = arg max
T

d (Y,Conv (XT )) ,

then by convexity of the distance function we have

d

(
1

n!

∑
σ∈Sn

Yσ,Conv (XT )

)
≤ 1

n!

∑
σ∈Sn

d (Yσ,Conv (XT ))

≤ 1

n!

∑
σ∈Sn

d (Y,Conv (XT ∗)) = d (Y,Conv (XT ∗)) .

As a result, we only need to consider outputs in the form 1
n!

∑
σ∈Sn

Yσ, which
has the same value in different coordinates. From now on, we only consider Y s.t.
for any σ ∈ Sn, Yσ = b. Clearly Yσ = Y for any σ ∈ Sn.

We can further simplify the distance by symmetry. There exist {ρi}i∈T s.t.
ρi ≥ 0,

∑
i∈T ρi = 1 and

d (Y,Conv (XT )) = d

(
Y,
∑
i∈T

ρiXi

)
5



Now for any permutation τ ∈ ST ,

d

(
Y,
∑
i∈T

ρiXi

)
= d

(
Yτ ,

∑
i∈T

ρτ(i)Xi

)
= d

(
Y,
∑
i∈T

ρτ(i)Xi

)
.

Put everything together,

d (Y,Conv (XT )) =
1

|T |!
∑
τ∈ST

d

(
Y,
∑
i∈T

ρτ(i)Xi

)

≥d

(
Y,

1

|T |!
∑
τ∈ST

∑
i∈T

ρτ(i)Xi

)
= d

(
Y,

1

|T |
∑
i∈T

Xi

)
.

Therefore we only need to lower bound d
(
Y, 1
|T |
∑
i∈T Xi

)
.

The last step is to simplify max
i,j∈T

‖Xi −Xj‖, which is just d (X1,X2) because

the distance between different Xis are same. To see this, consider the permutation
(i, k)(j, l) to prove d (Xi,Xj) = d (Xk,Xl).

Finally, given a, choose T = [n− f ], we just need to compute

min
Y=b1

d
(
Y, 1

(n−f)
∑
i∈[n−f ] Xi

)
d (X1,X2)

.

3.2. Lower bound for L1 distance. Here we choose a1 = 1 and ai = 0 for i > 1.
Now coordinates of

∑
i∈[n−f ] Xi can take only two values: 0 and 1. (n− f) (n− 1)!

of them are 1 and f (n− 1)! of them are 0. Therefore

d

Y,
1

n− f
∑

i∈[n−f ]

Xi

 = (n− 1)!

[
(n− f)

∣∣∣∣b− 1

n− f

∣∣∣∣+ f |b|
]

which is minimized when b = 1
n−f .

We also have d (X1,X2) = 2 (n− 1)!. Putting everything together, we have

Proposition 3. For the synchronous relaxed Byzantine consensus problem under
L1 distance with n processes and f failures (n ≥ 3f+1). There exist an instance s.t.

it is impossible to output a vector with less than f
2(n−f) maxi 6=j non-faulty ||Xi−Xj ||1

distance to convex hull of vectors of non-faulty processes.

3.3. Lower bound for L∞ distance. Here we set ai = 1 for 1 ≤ i ≤ f and ai = 0
for i > f . Since coordinates of

∑
i∈[n−f ] Xi lie within [0, f/(n− f)], we can choose

b = f/2(n− f) to guarantee

d

Y,
1

n− f
∑

i∈[n−f ]

Xi

 ≤ f

2 (n− f)
.

We also have d (X1,X2) = 1. Putting them together we have

Proposition 4. For the synchronous relaxed Byzantine consensus problem under
L∞ distance with n processes and f failures (n ≥ 3f + 1). There exist an instance

s.t. it is impossible to output a vector with less than f
2(n−f) maxi 6=j non-faulty ||Xi −

Xj ||∞ distance to convex hull of vectors of non-faulty processes.
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3.4. Lower bound for Lp distance. Similar to the construction in Section 3.2,
We also give lower bounds for Lp distance with generic p > 0. However, unlike the
results above, the lower bound here does not match the upper bound we prove.

We also choose a1 = 1 and ai = 0 for i > 1. Now coordinates of
∑
i∈[n−f ] Xi

can take only two values: 0 and 1. (n− f) (n− 1)! of them are 1 and f (n− 1)! of
them are 0. Therefore

d

Y,
1

n− f
∑

i∈[n−f ]

Xi

 = p

√
(n− 1)!

[
(n− f)

∣∣∣∣b− 1

n− f

∣∣∣∣p + f |b|p
]

which is minimized when

• b = 1
n−f if 0 < p ≤ 1 and

• b = 1
n−f

(n−f)
1

p−1

(n−f)
1

p−1 +f
1

p−1
if p > 1.

We also have d (X1,X2) = p
√

2 (n− 1)!. Putting everything together, we have

Proposition 5. For the synchronous relaxed Byzantine consensus problem under
Lp distance with n processes and f failures (n ≥ 3f + 1). There exist an instance
s.t. it is impossible to output a vector within

• 1
n−f

p

√
f
2 maxi 6=j non-faulty ||Xi −Xj ||p if 0 < p ≤ 1,

• (n−f)
1
p
−1
f

1
p

2
1
p

[
(n−f)

1
p−1 +f

1
p−1

] p−1
p

maxi 6=j non-faulty ||Xi −Xj ||p if p > 1

distance to convex hull of vectors of non-faulty processes.

For the special case p = 2, one can verify that it is not possible to achieve a

lower bound better than
√

f
2n(n−f) by using a different sequence {ai}ni=1.

4. Other Results

In this section we prove some sporadic results related to the relaxed Byzantine
consensus problem.

4.1. Byzantine distribution consensus. We consider the Byzantine distribution
consensus problem, where the input are probability distributions on the compact
interval [0, 1], and the non-faulty processes must output a distribution (resp. mea-
sure) on the interval that is close in total variation distance (resp. in L1 distance)
to the convex hull of distributions of the non-faulty processes. For this problem,
we can prove matching lower and upper bounds.

Proposition 6. For the synchronous relaxed Byzantine distribution consensus
problem under total variation distance (resp. L1 distance) with f failures (n ≥
3f + 1) where each Xi is a probability distribution on [0, 1], the following holds.

(1) There is an algorithm that outputs a distribution with ≤ f
n TV-distance to

the convex hull of distributions of the non-faulty processes.
(2) There is no algorithm that outputs a distribution with < f

n TV-distance to
the convex hull.

(3) There is an algorithm that outputs a measure with ≤ f
n−f L1-distance to

the convex hull.
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(4) There is no algorithm that outputs a measure with < f
n−f L1-distance to

the convex hull.

Proof. (1). Each process broadcasts Xi. Each process outputs X∗ := 1
n

∑
Xi.

Let S ⊆ [n] be the set of non-faulty processes. Then

dTV(X∗,Conv(XS)) ≤ TV(X∗,
1

|S|
∑
i∈S

Xi) ≤
n− |S|
n

≤ f

n
.

(3). Each process broadcasts Xi. Each process outputs X∗ := 1
n−f

∑
Xi.

Let S ⊆ [n] be the set of non-faulty processes. Then

dL1
(X∗,Conv(XS)) ≤ dL1

(X∗,
1

|S|
∑
i∈S

Xi) ≤
f

n− f
.

(2)(4). The proof is very similar to Section 3. Suppose each Xi is a point
distribution δxi

with xis distinct. Suppose in an algorithm, all non-faulty processes
output distribution/measure X. By symmetry, for any permutation σ ∈ Sn, σ(X)
is also a valid output. By convexity of the distance function, 1

|Sn|
∑
σ∈Sn

σ(X) is

also a valid output. Therefore there exists an algorithm not worse than the original
one, that outputs a distribution/measure that has the same weight on all xi’s. We
can compute the optimal one among such distributions/measures and conclude. �

4.2. Weaker input-dependence. In the input dependent version, we compare
the distance to convex hull to the maximum distance between inputs of the non-
faulty processes. One may wonder what happens if we compare to the maximum
distance between all Xis.

For the upper bound we can get a better algorithm.

Proposition 7. For the synchronous relaxed Byzantine consensus problem under
arbitrary norm and f failures (n ≥ 3f + 1), there exists an algorithm that can
output a vector with at most

f

n
max
i 6=j
||Xi −Xj ||

distance to the convex hull of vectors of non-faulty processes.

Proof. Each process broadcasts Xi. Each process outputs X∗ := 1
n

∑
Xi.

Let S ⊆ [n] be the set of non-faulty processes. Then

d(X∗,Conv(XS)) ≤ ||X∗ − 1

|S|
∑
i∈S

Xi||

= || 1
n

∑
i 6∈S

Xi − (
1

|S|
− 1

n
)
∑
i∈S

Xi||

≤ n− |S|
n

max
i 6∈S,j∈S

||Xi −Xj ||

≤ f

n
max
i 6=j
||Xi −Xj ||.

�

For the lower bound, it is easy to see that all lower bounds in Section 3 still hold.
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